Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050619

RESUMO

LIDAL (Light Ion Detector for ALTEA, Anomalous Long-Term Effects on Astronauts) is a radiation detector designed to measure the flux, the energy spectra and, for the first time, the time-of-flight of ions in a space habitat. It features a combination of striped silicon sensors for the measurement of deposited energy (using the ALTEA device, which operated from 2006 to 2012 in the International Space Station) and fast scintillators for the time-of-flight measurement. LIDAL was tested and calibrated using the proton beam line at TIFPA (Trento Institute for Fundamental Physics Application) and the carbon beam line at CNAO (National Center for Oncology Hadron-therapy) in 2019. The performance of the time-of-flight system featured a time resolution (sigma) less than 100 ps. Here, we describe the detector and the results of these tests, providing ground calibration curves along with the methodology established for processing the detector's data. LIDAL was uploaded in the International Space Station in November 2019 and it has been operative in the Columbus module since January 2020.

2.
Life Sci Space Res (Amst) ; 36: 39-46, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682828

RESUMO

The Anomalous Long Term Effects in Astronauts (ALTEA) project originally aimed at disentangling the mechanisms behind astronauts' perception of light flashes. To this end, an experimental apparatus was set up in order to concurrently measure the tracks of cosmic radiation particles in the astronauts' head and the electroencephalographic (EEG) signals generated by their brain. So far, the ALTEA data set has never been analyzed with the broader intent to study possible interference between cosmic radiation and the brain, regardless of light flashes. The aim of this work is to define a pipeline to systematically pre-process the ALTEA EEG data. Compared to the analysis of standard EEG recording, this task is made more difficult by the presence of unconventional artifacts due to the extreme recording conditions that, in particular, require the EEG cap to be positioned next to another noisy electronic device, namely the particle detectors. Here we show how standard tools for the analysis of EEG data can be tuned to deal with these unconventional artifacts. After pre-processing the available data we were able to elucidate a shift of the center frequency of the α rhythm induced by visual stimulation, thus proving the effectiveness of the implemented pipeline. This work represents the first study presenting results of signal processing of ALTEA EEG time series. Further, it is the starting point of a future work aimed at analyzing the interaction between EEG and cosmic radiation.


Assuntos
Radiação Cósmica , Voo Espacial , Humanos , Eletroencefalografia , Astronautas , Encéfalo , Radiação Cósmica/efeitos adversos
3.
Front Plant Sci ; 13: 1001158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212311

RESUMO

For deep space exploration, radiation effects on astronauts, and on items fundamental for life support systems, must be kept under a pre-agreed threshold to avoid detrimental outcomes. Therefore, it is fundamental to achieve a deep knowledge on the radiation spatial and temporal variability in the different mission scenarios as well as on the responses of different organisms to space-relevant radiation. In this paper, we first consider the radiation issue for space exploration from a physics point of view by giving an overview of the topics related to the spatial and temporal variability of space radiation, as well as on measurement and simulation of irradiation, then we focus on biological issues converging the attention on plants as one of the fundamental components of Bioregenerative Life Support Systems (BLSS). In fact, plants in BLSS act as regenerators of resources (i.e. oxygen production, carbon dioxide removal, water and wastes recycling) and producers of fresh food. In particular, we summarize some basic statements on plant radio-resistance deriving from recent literature and concentrate on endpoints critical for the development of Space agriculture. We finally indicate some perspective, suggesting the direction future research should follow to standardize methods and protocols for irradiation experiments moving towards studies to validate with space-relevant radiation the current knowledge. Indeed, the latter derives instead from experiments conducted with different radiation types and doses and often with not space-oriented scopes.

4.
Sci Rep ; 7(1): 1644, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490795

RESUMO

Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm2).

5.
Neurosci Lett ; 416(3): 231-5, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17376593

RESUMO

Phosphenes ("light flashes") have been reported by most astronauts on space missions and by healthy subjects whose eyes were exposed to ionizing radiation in early experiments in particle accelerators. The conditions of occurrence suggested retinal effects of heavy ions. To develop an in vivo animal model, we irradiated the eyes of anesthetized wild-type mice with repeated bursts of 12C ions delivered under controlled conditions in accelerator. 12C ions evoked electrophysiological retinal mass responses and activated the visual system as indicated by responses recorded from the visual cortex. No retinal immunohistological damage was detected. Mice proved a suitable animal model to study radiation-induced phosphenes in vivo and our findings are consistent with an origin of phosphenes in radiation activating the retina.


Assuntos
Carbono , Íons Pesados , Retina/efeitos da radiação , Córtex Visual/fisiologia , Animais , Eletrorretinografia/métodos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Fosfenos/efeitos da radiação , Retina/anatomia & histologia , Córtex Visual/efeitos da radiação , Vias Visuais/fisiologia , Vias Visuais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...